
Tutorial Sheet-3: Proof Techniques

- (1) Prove that if n is an integer and n^2 is odd, then n is odd.
- (2) Prove that \sqrt{p} is irrational, where p is prime number.
- (3) Show that the square of an even number is an even number.
- (4) Prove or disprove that the product of two irrational numbers is irrational.
- (5) Prove that if x is rational and $x \neq 0$, then $\frac{1}{x}$ is rational.
- (6) Prove that sum of a rational number and an irrational number is irrational.
- (7) Prove or disprove $7^n - 4^n$ is divisible by 3, for all $n \in \mathbb{N}$.
- (8) Prove or disprove $9(9^n - 1) - 8n$ is divisible by 64, for all $n \in \mathbb{N}$.
- (9) Prove that $\arctan \frac{1}{3} + \arctan \frac{1}{7} + \dots + \arctan \frac{1}{n^2+n+1} = \arctan \frac{n}{n+2}$, for all $n \in \mathbb{N}$.
- (10) Prove that if n is an integer, then $n^2 \geq n$.
- (11) Show that if a and b are integers and both ab and $a + b$ are even, then both a and b are even.
- (12) Prove that $m^2 = n^2$ if and only if $m = n$ or $m = -n$.
- (13) Prove that if n is a positive integer, then n is even if and only if $7n + 4$ is even.
- (14) Prove that if n is a perfect square, then $n + 2$ is not a perfect square.
- (15) Let $n \in \mathbb{N}$ and suppose we are given real numbers $a_1 \geq a_2 \geq \dots \geq a_n \geq 0$. Then Arithmetic mean (AM) $= \frac{a_1+a_2+\dots+a_n}{2} \geq (a_1a_2\dots a_n)^{\frac{1}{n}} = \text{GM (Geometric mean)}$.
- (16) Fix a positive integer n and let A be a set with $|A| = n$. Let $P(A)$ denote the power set of A . Then show that $|P(A)| = 2^n$.
- (17) Consider the following recursively defined set S :
 1. $a \in S$
 2. If $x \in S$, then $(x) \in S$Prove by structural induction that every element in S contains an equal number of right and left parentheses.
- (18) Prove the following property about the length function: $\forall y, x \in X$, $\text{len}(xy) = \text{len}(x) + \text{len}(y)$, where X is the collection of all finite strings on the finite alphabet set.
- (19) Consider the function $f : \{\dots, -3, -2, -1\} \rightarrow \{\dots, -3, -2, -1\}$ defined recursively as follows: $f(-1) = -1$, $f(n) = f(n + 1) + n$ for $n < -1$. Show that $f(n) = -\frac{|n|(|n|+1)}{2}$.